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Describing the Properties of Chains of Segments
Interacting Via Soft-Core Potentials of Variable
Range with the SAFT-VR Approach’

L. A. Davies,? A. Gil-Villegas,” *> and G. Jackson®*

We present a general development for the equation of state (EOS) of chain
molecules composed of tangent spherical segments interacting with a soft repul-
sive potential and an attractive well. The method is based on a recent version
of the statistical associating fluid theory for chain molecules with interaction
potentials of variable range (SAFT-VR). In this communication we focus our
attention on the properties of Lennard-Jones chains (LJC), using SAFT-VR
and a sample recipe for the evaluation of the chain free energy that requires only
a knowledge of the contact value of the cavity function of a Sutherland-6
system. We study the liquid-vapor coexistence properties for different vatues of
the chain length. The results obtained are of similar accuracy to other EOS for
LJC, but our approach is simpler and more general. We show that standard
perturbation theories developed for simple liquids can also be used for chain
molecules.
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1. INTRODUCTION

The statistical associating fluid theory (SAFT) [, 2] is a very accurate
theory for the properties of a wide range of fluid systems and their mix-
tures. It is based on a perturbation theory for associating fluids proposed
by Wertheim {3-8], where molecules are modeled as chains of spheres
with dispersion forces and short-range attractions that mimic association.
The two major advantages of the SAFT approach are that the equation of
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state is obtained from the properties of the constituent monomeric segments
and that each one of the terms can be directly compared with, and tested
against, molecular simulation.

Several extensions of SAFT have been developed, differing from the
original theory in the way that the monomer segments and the interactions
are described. Complex association processes (e.g., the formation of ring
aggregates [9-12], double-bonding [13] and bond co-operativity [14]),
as well as chains composed of dimer segments [ 15, 16], have been studied.
The different versions of SAFT have all proven to be very successful in
their description of real substances.

Recently, we have proposed a version of SAFT for hard spheres inter-
acting via attractive wells of variable range (SAFT-VR) [17]. We have
shown that the range parameter is a useful quantity in the description of
experimental systems since it accounts for the nonconformal behavior pre-
sent in liquids and their mixtures. Moreover, SAFT-VR comprises a com-
pact representation of the monomer properties, in the framework of the
Barker and Henderson perturbation theory for simple liquids [ 18-201,
which can be easily extended to mixtures.

In this paper we consider a further extension of SAFT-VR to account for
chain molecules which are formed from soft-core segments with variable
repulsive and attractive ranges. We demonstrate that the analytical expres-
sions developed previously for the hard-core models together with a Barker
and Henderson effective hard-sphere diameter [ 20] can be used for this pur-
pose. As a specific application, we present an equation of state for Lennard-
Jones chains. This system has been studied extensively in the past, and a num-
ber of accurate equations of state have been reported [21-25]. Our main goal
is to show that SAFT-VR provides a simple and compact equation of state for
LJC which is valid for ranges of density and temperature of practical interest.

We first summarize the SAFT-VR equation of state for hard-core
systems interacting with a Sutherland-4 potential and then use this model for
a description of the Mie m-n family of potentials [ 26 ], of which the Lennard-
Jones potential is a specific case (m =6 and n = 12). We also present a simple
recipe for the calculation of the free energy due to chain formation, and the
prediction of LIC properties are compared with simulation results.

2. SAFT-VR FOR PURE FLUIDS

The Helmholtz free energy for associating chain molecules is described
in the SAFT approach as

A A IDEAL A MONO A CHAIN A ASSOC,

NKT ~ NkT T NkT T Nk T NkT ()




Properties of Chain Molecules with SAFT-VR 677

where the different terms in this equation correspond to the contributions
to the frec energy due to the ideal fluid, the monomer segments, chain
formation, and intermolecular association, respectively.

The free energy of an ideal gas is given by [27]

A IDEAL

- 3y _
NKT =In(pA7) —1 (2)

where p=N/V is the number density of chain molecules and not of
monomer segments, and A is the de Broglie wavelength. Considering this
term separately means that all of the other terms are residual free energies.

We consider that the general form of the monomer-monomer interac-
tion is given by a hard-sphere repulsive term plus an attractive well:

oG if r<o
—ed(r; A) if r>co

(3)

uM(r; o, €, i)z{

where o is the spherical hard-core diameter, while &, ¢, and 4 are, the
depth, the shape, and the range parameter of the attractive well, respec-
tively. In the SAFT-VR approach [ 17] different potential models can be
used for the attractive well. Here, we consider only the Sutherland potential,
which takes the form

$5(r; Ay =(a/r)* (4)

The range parameter A controls the decay of the interaction. By varying 4,
different angle-averaged multipolar-like forces, such as the Mie m—n poten-
tials, can be modeled with this potential.

The contribution to the free energy due to the monomers (m, of which
make up each chain molecule) interacting with a potential of the form
given in Eq. (3) is

A MONO. A M

NkT SN KT

=maM (5)

where N, is the total number of spherical monomers, and «™ = AM/(NAT)
is the excess Helmholtz free energy per monomer segment. An accurate
description of aM is obtained from the high-temperature expansion given
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by the Barker and Henderson perturbation theory for hard-core systems
[18-20],

aM = a"® + Ba, + p*a, (6)

where f=1/kT, a™ is the residual free energy for a hard-sphere (HS)
fluid, and a, and a, are the first two perturbation terms associated with the
attractive well. The HS residual free energy is obtained from the Carnahan
and Starling expression [28],

a}—{s:477'—3’72
(1—-m?

(7)

where n=mna’p,/6 is the packing fraction of the system, and p,=N/V
is the density of monomers (segments). The mean-attractive energy «, is
given by [20]

ar=~2mpe [ r9(r) g0 dr (8)

where g"5(r) is the radial distribution function of the hard-sphere reference
system. By using the mean-value theorem, g"S(r) can be factorized from
the integral and written in terms of its contact value g"S(1; 5.y), an effective
packing fraction #.y, and the van der Waals mean-field term )% [17]:

alza\]/DngS(l;neﬂ“) %)
where
1 —nen/2
HS el
(Lfeg) = (10
g Me) =7, )

is obtained from the Carnahan and Starling expression [28]. In the case of
the Sutherland potential, ¢, =43, and

aYDW:—4178</1_3_3> (11)

where 7 =na%p,/6 is the packing fraction of the system, and

He(#, A) = €1+ o (12)
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with

1
<c1> _ < —0.943973 0422543  —0.0371763  0.00116901 A
T\ 0370942  —0.173333  0.0175599  —0.000572729 )\ A2

i3

(13)

C2

The second-order term can be calculated in the local compressibility
approximation [ 20],

2aS(24)

on (14)

1
a3(i)= 3 eKHSy
where K™ is the Percus—Yevick hard-sphere isothermal compressibility,

KHs_ (1_7/)4

T 144 +4n? (15)

The contribution to the free energy due to the formation of a chain of
m monomers is [ 1, 21]

A CHAIN

NkT

= —(m,~1)In yM(g) (16)

where yM(o) is the monomer-monomer background correlation function
evaluated at hard-core contact; if g™(r) is the monomer-monomer radial
distribution function, then yM(r) = exp[ «™(r)/kT] gM(r). In the SAFT-VR
approach a perturbation expansion is used for the monomer-monomer
contact value of the radial distribution function [20],

gMot)=g"S(a )+ fegila™) (17)

and g,(c*) is obtained from a self-consistent calculation of the pressure,
using the virial theorem of Clausius and the derivative of the free energy
with respect to density. For the Sutherland potential we obtain [ 17]

1

oaS
gS(0.+)=gHS(O.)+Zﬂ[_fl_l A

——a$ 18
a” 3’7 al ] ( )
The value of g5 ™) is also required in the calculation of the association
free energy term. It must be stressed that all that is needed for the calcula-
tion of the complete equation of state is a hard-sphere equation of state
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and the mean attractive energy «,, which is given in terms of the hard-
sphere contact value of g.

The contribution to the Helmholtz free energy due to association for
s sites on the chain molecules is obtained from the theory of Wertheim as
[29]

AASSOC‘ s Xa §
NET =[ Z <ll’1 Xa—"2—>+§} (19)

a=1

where the sum is over all s sites g on a molecule, and X, is the fraction of
molecules not bounded at site «. The latter quantity is obtained by a solu-
tion of the following mass action equation:

1
X, = ~
1+35 1 pXpd, s

(20)

The function 4, , characterizes the association between site @ and site b on
different molecules. It can be written in terms of the contact value g™(o)
of the monomer-monomer radial distribution function, the Mayer function
Jas=exp(—V, ,/kT)—1 of the a—b site-site bonding interaction ¥, ,, and
the volume K, , available for bonding as [30]

Aa,sza,b a,bgM(O-) (21)

The bonding volume K, , can be determined from the parameters of the
bonding site such as its position and range [30]. As for the chain contribu-
tion, gM(a) is approximated by g5c ™).

3. SAFT-YR FOR LENNARD-JONES CHAINS

The expressions presented in the previous section can be used to
develop an equation of state for chain molecules interacting via the Mie
m—n potentials [ 26], of which the Lennard-Jones (m =6 and n=12) is the
most common example. The Mie m—n potentials are given by

(-

mj(n—m)
%=1 <” > (23)

n—m\m

where
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Systems interacting with binary potentials with soft repulsive inter-
actions like Eq. (22) can be described within the Barker and Henderson
perturbation theory, by considering an equivalent potential with a hard-
core temperature-dependent diameter,

M _ | if r<ogy(T)
uBHa{uM it r>opu(T) (24)
where
owlT)= [ (1—exp(—pu™)) dr (25)

0

and ¢ defines the position where #™ changes sign. The free energy is then
calculated with the expansion [ Eq. (6)] using the packing fraction,

el T) = n(opn/o)’ (26)

The expressions for a,, a,, and g(c*) derived earlier [ Egs. (9), (14), and
(18)] can be used directly in the expressions for the soft-core systems. Since
the family of Mie potentials can be represented by a sum of an attractive
and of a repulsive Sutherland potential, the mean-attractive energy for such
systems can be expressed as the sum of two Sutherland a, terms,

allmE=(g[_a?(’73H;iz”)+a§('73ﬂ;'1=m)] (27)

where af corresponds to the mean-attractive energy for a Sutherland
system with exponent A. The second-order term a, is given in terms of the
repulsive contribution only as

aY'E=%a3(ngu; A=m) (28)

For the LJ fluid we can apply this recipe with the following parame-
trization for agy [17]:

opu/0 = 0995438 — 0.0259917T* + 0.00392254 T ** — 0.000289398 T *3
(29)

where T* =kT/e. In order to calculate the contribution to the free energy
due to chain formation, we require the monomer cavity function at the bond-
ing distance, yp. For systems interacting with soft repulsive interactions, the
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bond distance is o, i.e., where the potential is zero. Since in the SAFT-VR
approach the molecules are formed from effective hard-core segments with
diameter gy, the bond length is oy, and y ! can be calculated according to

vt =y om) (30)
where yY is the cavity function of the hard-core LJ potential from the
Barker and Henderson perturbation theory. We have found that a more
accurate prediction of the properties of the Lennard-Jones chains is
obtained with the approximation,

J’QA:)’S()(UBH) (31)

3.5

Fig. 1. The vapor-liquid coexistence densities for Lennard-Jones
chains of length m, compared with the Gibbs ensemble simulation
data of Panagiotopoulos [31] (m, =1} and of Escobedo and de
Pablo [257 (m,=2. 4, and 8). The solid curves correspond to the
SAFT-VR approach, and each is labeled with the values of the
chain length m,. The reduced parameters used are 7% =kT/¢ and
pE=pa’.
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where y°° is the Sutherland-6 potential contact value, obtained directly
from Eq. (18). With this approximation, the final expression for the chain
free energy is

ACHAIN

_ . S6
NKT - (my—1)In y*(ogy) (32)

4. RESULTS

The vapor-liquid phase equilibria of Lennard-Jones chains of length
m,=2, 4, and 8 obtained using the SAFT-VR approach outlined in the
previous section are compared with existing Gibbs ensemble Monte Carlo
(GEMC) simulation results [25] in Fig. 1. The SAFT-VR description for
monomers (my=1) given previously [ 17] and the corresponding GEMC
simulation results [31] are also shown. The SAFT-VR theory gives a good
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Fig. 2. The reduced pressure P* = Pg*/e of Lennard-Jones chains
with m,=2 (diatomics) as a function of the reduced monomer
density pX*=p,s’. The squares, diamonds, circles, and triangles
are the molecular dynamics simulation results of Johnson et al.
[24] for T*=kT/e=35, 4, 3, and 2, respectively. The solid curves
correspond to the SAFT-VR predictions.
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overall description of the coexistence region and reproduces the effect of
increasing the chain length. The theory’s adequacy is, however, seen to
decrease as the chain length increases, which can be rationalized in terms
of an inaccurate description of molecular structure, such as folding, which
occurs as the chain length increases [247. It is well known that the SAFT
approach accurately describes the behavior of long-chain molecules up to
m, =8 [15]. Various supercritical isotherms calculated using the SAFT-VR
approach for LJIC with m =2, 4, and 8 are presented in Figs. 2, 3, and 4,
respectively. The SAFT-VR expressions are seen to compare favorably with
results obtained with the equation of state proposed by Johnson et al.
[24]; these authors used an accurate empirical representation for g“'(o).
The approximation used in Eq. (32) gives an accurate prediction of the
vapor-liquid envelope, as well as the pressure for the whole range of
monomer densities p*. Our equation of state overpredicts the residual
internal energy for densities p* > 0.7.
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Fig, 3. The reduced pressure P* = Pg>/e of Lennard—-Jones chains
with m,=4 as a function of the reduced monomer density p* =
pso°. The diamonds, circles, and triangles are the molecular
dynamics simulation results of Johnson et al. [24] for T*=
kT/e=4, 3, and 2, respectively. The solid curves correspond to the
SAFT-VR predictions.
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20

Fig. 4. The reduced pressure P* = Pg’/e of Lennard-Jones chains
with m,=28 as a function of the reduced monomer density p* =
ps6°. The diamonds, circles, and triangles are the molecular
dynamics simulation results of Johnson et al. [24] for T*=
kTje=4, 3, and 2, respectively. The solid curves correspond to the
SAFT-VR predictions.

5. CONCLUSION

We have presented a general equation of state for associating chain
molecules interacting via potentials with soft-core repulsive interactions.
This EOS is based on the recently developed SAFT-VR approach, together
with a simple recipe for the evaluation of the chain free energy from the
properties of the Sutherland-A potential. We have seen that in the case of
Lennard-Jones chains, an accurate description is obtained for vapor-liquid
coexistence properties.
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